News Column

Patent Issued for Radiographic Image Acquiring Apparatus, Radiographic Image Capturing System, and Radiographic Image Capturing Method

June 3, 2014



By a News Reporter-Staff News Editor at Information Technology Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventor Kuwabara, Takeshi (Ashigarakami-gun, JP), filed on January 31, 2011, was published online on May 20, 2014.

The patent's assignee for patent number 8731141 is FUJIFILM Corporation (Tokyo, JP).

News editors obtained the following quote from the background information supplied by the inventors: "The present invention relates to a radiographic image capturing system and a radiographic image capturing method for irradiating a subject with radiation and converting radiation that has passed through the subject into a radiographic image by means of a radiation detection device. The present invention also relates to a radiographic image acquiring apparatus for acquiring the radiographic image from the radiation detection device.

"In the medical field, it has widely been practiced to apply radiation to a subject and to convert radiation that has passed through the subject into a radiographic image by a radiation conversion panel, and then to acquire the radiographic image from the radiation conversion panel. One known type of radiation conversion panel is a stimulable phosphor panel, which stores radiation energy representative of a radiographic image in a phosphor, and then, when the stimulable phosphor panel is irradiated with stimulating light, a radiographic image is obtained as stimulated light representative of the stored radiographic image. In this case, the stimulable phosphor panel is supplied to a radiographic image acquiring apparatus, and by carrying out acquisition processing of the radiographic image, the radiographic image can be obtained as a visible image.

"Further, recently, in sites of medical practice such as operating rooms or the like, it is necessary to acquire and display radiographic image information from a radiation conversion panel immediately after capturing a radiographic image, for the purpose of quickly and appropriately treating patients. As a radiation conversion panel which meets such a requirement, there have been developed a direct conversion type of radiation detection device, in which solid state detection elements are used that directly convert radiation into electrical signals, as well as an indirect conversion type of radiation detection device utilizing a scintillator, which converts radiation into visible light, and solid state detection elements for converting the visible light into electrical signals.

"Incidentally, in a medical organization, a radiographic image capturing system may be set up having a plurality of radiation detection devices equipped with the aforementioned radiation conversion panels. (See, for example, Japanese Laid-Open Patent Publication No. 2004-073462 and Japanese Laid-Open Patent Publication No. 2009-219586.)

"An explanation shall now be made concerning application of radiation to a subject (image capturing) and acquisition processing of radiographic images, for a case in which all of the radiation detection devices within the radiographic image capturing system are radiation detection devices equipped with a radiation conversion panel (hereinafter also referred to as a Flat Panel Detector or FPD) of a direct conversion or indirect conversion type.

"First, a doctor or radiological technician selects one radiation detection device from among the plurality of radiation detection devices and, concerning the FPD of the selected radiation detection device, prepares the same so as to be capable of storing electrical signals (electrical charges) converted from the radiation.

"Next, the doctor or radiological technician positions the subject (patient) between a radiation source and the one radiation detection device. In such a state, when radiation is irradiated from the radiation source onto the one radiation detection device through the subject, the FPD converts radiation that has passed through the subject into electrical charges, which are then stored. After application of radiation, the radiographic image acquiring apparatus acquires the electrical charges that have been stored in the FPD as a radiographic image corresponding to the subject.

"In this manner, with the radiographic image capturing system according to the conventional art, one radiation detection device is selected, radiation is irradiated onto the radiation detection device from the radiation source while passing through the subject, and by acquiring a radiographic image from the one radiation detection device, the radiographic image acquiring apparatus associates the subject with the radiographic image.

"Incidentally, responsive to a condition of the one radiation detection device (for example, in the event of malfunctioning of the one radiation detection device, or if the charge amount of a battery thereof is not a sufficient charge amount required to capture an image), cases may occur in which image capturing is carried out using a different radiation detection device in place of the one radiation detection device. In such a case, when radiation is irradiated onto the other radiation detection device from the radiation source while passing through the subject, the subject is reflected in the radiographic image of the other radiation detection device.

"However, in a case where the radiation detection device is changed, yet one forgets to notify the radiographic image acquiring apparatus of the details concerning carrying out of image capturing, there is a concern that the radiographic image acquiring apparatus may acquire the radiographic image from the selected one radiation detection device, and thus erroneously associate the subject with the radiographic image therefrom. In this case, because when the radiographic image acquiring apparatus acquires the radiographic image from the one radiation detection device, the subject is not properly reflected in the radiographic image, it is determined that an image capturing failure has occurred, and image capturing must be carried out again with respect to the subject.

"Stated otherwise, with the radiographic image capturing system according to the conventional art, in the event that the radiation detection device (the other radiation detection device), which is equipped with the FPD that actually was irradiated with radiation, does not match with the radiation detection device (the one radiation detection device) equipped with the FPD from which the radiographic image is acquired, image capturing is carried out again without acquiring the radiographic image possessed by the other radiation detection device and in which the subject's image is reflected, and thus there is a concern that the subject is unnecessarily exposed to radiation."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventor's summary information for this patent: "The present invention has the object of resolving the aforementioned difficulties and of providing a radiographic image acquiring apparatus, a radiographic image capturing system and a radiographic image capturing method, in which, by reliably and accurately acquiring a radiographic image in which a subject is reflected, it is possible to prevent unnecessary exposure to radiation with respect to the subject.

"In the radiographic image acquiring apparatus according to the present invention, in the event that one radiation detection device is selected from among a plurality of radiation detection devices, each of which is capable of converting radiation into a radiographic image, the radiographic image acquiring apparatus comprises an acquisition unit for acquiring all of the radiographic images from the plurality of radiation detection devices, including the radiographic image from the one radiation detection device, at a time when application of radiation with respect to a subject is carried out.

"Further, a radiographic image capturing system according to the present invention is equipped with a plurality of radiographic image capturing apparatus having a radiation source that outputs radiation, and a radiation detection device for converting the radiation into a radiographic image, and a radiographic image acquiring apparatus having an acquisition unit which, in the event that one radiation detection device is selected from among the plurality of radiographic image capturing apparatus, acquires all of the radiographic images from the plurality of radiation detection devices, including the radiographic image from the one radiation detection device, at a time when application of radiation with respect to a subject is carried out.

"Furthermore, a radiographic image capturing method according to the present invention includes, in the event that one radiation detection device is selected from among a plurality of radiation detection devices, each of which is capable of converting radiation into a radiographic image, a step of carrying out application of radiation with respect to a subject, and a step of acquiring, by an acquisition unit, all of the radiographic images from the plurality of radiation detection devices, including the radiographic image from the one radiation detection device.

"According to the aforementioned inventions, an acquisition unit acquires all of the radiographic images from a plurality of radiation detection devices, including a radiographic image from a selected one of the radiation detection devices.

"As a result thereof, even in the case that radiation was applied through the subject to the one radiation detection device, or if another radiation detection device is used and radiation was applied through the subject to the other radiation detection device, since the acquisition unit acquires radiographic images from all of the radiation detection devices, among all of the acquired radiographic images, the subject will necessarily be reflected in one of the radiographic images.

"Consequently, according to the present invention, since a radiographic image in which the subject is reflected can be acquired reliably and with certainty, unnecessary exposure to radiation with respect to the subject can be prevented.

"The radiographic image acquiring apparatus may further include a determining unit for determining, from among each of the radiographic images acquired by the acquisition unit, a significant radiographic image in which the subject is reflected.

"As a result thereof, among all of the radiographic images acquired by the acquisition unit, it is possible to determine which of the radiographic images is the significant radiographic image in which the subject is reflected. The significant radiographic image in which the subject is reflected is defined as a radiographic image in which, for example, in the case that the radiographic image is made up of image data consisting of digital data, an average value or the distributed value of intensity of the image data is equal to or greater than a predetermined threshold.

"Further, the radiographic image acquiring apparatus may further comprise an image selector which, in the case that the determining unit determines that the significant radiographic image does not exist, selects from among each of the radiographic images, any one of the radiographic images to be regarded as the significant radiographic image.

"In accordance therewith, even if a significant radiographic image cannot be obtained, a situation in which a radiographic image of the subject must be recaptured can be avoided by regarding as the significant radiographic image a radiographic image capable of enabling image reading diagnosis yet wherein, for example, the average value or the distributed value of intensity of the image data is slightly lower than the aforementioned threshold value.

"Further, in place of the above-mentioned structure, the image selector may select, from among each of the radiographic images acquired by the acquisition unit, any one of the radiographic images to be regarded as a significant radiographic image in which the subject is reflected.

"In this case, although determination of the significant radiographic image is not carried out automatically by the determining unit, the significant radiographic image can be selected by a doctor or radiological technician, or even if a significant radiographic image does not exist, the doctor or radiological technician can select a radiographic image capable of enabling image reading diagnosis.

"Further, the radiographic image acquiring apparatus may further include an output device for outputting to the exterior the significant radiographic image.

"Consequently, a doctor can carry out image reading diagnosis using the significant radiographic image.

"Further, in the event that application of radiation with respect to the subject is carried out in an image capturing room, the radiographic image acquiring apparatus may further include an identification information storage unit, which stores identifying information of the plurality of radiation detection devices that reside in the image capturing room, wherein based on the identifying information stored in the identification information storage unit, the acquisition unit acquires all of the radiographic images from the plurality of radiation detection devices that reside in the image capturing room.

"Owing thereto, because acquisition processing of radiographic images is carried out only with respect to the plurality of radiation detection devices that reside in the image capturing room, mistakenly carrying out of acquisition processing with respect to radiation detection devices outside of the image capturing room can securely be prevented, and acquisition of the radiographic images can be performed highly efficiently.

"Furthermore, the plurality of radiation detection devices may each comprise, respectively, a radiation conversion panel, which converts radiation into electrical charges and stores the electrical charges, and outputs the stored electrical charges to the exterior as electrical signals, wherein each of the radiation conversion panels is placed in a state enabling storage of electrical charges before radiation is applied with respect to the subject.

"Owing thereto, since it is unnecessary to apply radiation, as a trigger for instructing each of the radiation conversion panels to store electrical charges, to each of the radiation detection devices before actual image capturing is performed, the structure for instructing storage of electrical charges can be simplified, and the radiation exposure amount to the subject can be lessened.

"According to the present invention, because the acquisition unit acquires all of the radiographic images from a plurality of radiation detection devices, including the radiographic image from the one radiation detection device, a radiographic image in which a subject is reflected can be acquired reliably and accurately, and unnecessary exposure to radiation with respect to the subject can be prevented.

"The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which preferred embodiments of the present invention are shown by way of illustrative example."

For additional information on this patent, see: Kuwabara, Takeshi. Radiographic Image Acquiring Apparatus, Radiographic Image Capturing System, and Radiographic Image Capturing Method. U.S. Patent Number 8731141, filed January 31, 2011, and published online on May 20, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=47&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=2349&f=G&l=50&co1=AND&d=PTXT&s1=20140520.PD.&OS=ISD/20140520&RS=ISD/20140520

Keywords for this news article include: FUJIFILM Corporation, Information Technology, Information and Data Storage.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Information Technology Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters