News Column

Patent Issued for Hybrid Pointing Device

June 4, 2014



By a News Reporter-Staff News Editor at Journal of Engineering -- Pixart Imaging Inc. (Hsin-Chu, TW) has been issued patent number 8730169, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.

The patent's inventors are Lin, Cho Yi (Hsin-Chu, TW); Chang, Yen Min (Hsin-Chu, TW); Hsu, Yao Ching (Hsin-Chu, TW); Ko, Yi Hsien (Hsin-Chu, TW).

This patent was filed on April 30, 2010 and was published online on May 20, 2014.

From the background information supplied by the inventors, news correspondents obtained the following quote: "This invention generally relates to a hybrid pointing device and, more particularly, to a hybrid pointing device including an optical navigation module configured to sense a gesture of at least one finger and a pointing module configured to sense a movement of the hybrid pointing device relative to a surface.

"For a conventional pointing device, e.g. an optical mouse and a trackball mouse, a pointer shown on a display of a host is controlled by a relative displacement between the pointing device and a surface. The pointing device generally includes two buttons (left and right buttons) for activating commands associated with the movement of the pointer on the display. Usually, when a user wants to execute a program, drag an icon, modify a picture, etc., the user moves the pointer on the display and points the pointer on a particular graphic user interface (GUI) then presses at least one button to activate commands. To enhance the applications of conventional pointing devices, some pointing devices are provided with more than two buttons; therefore, the user may define particular functions activated by pressing the additional buttons or by pressing several buttons simultaneously associated with moving the pointer on the display.

"However, too many buttons integrated on a pointing device may confuse the user since the user can only operate the buttons with at most five fingers one time. For example, when the user tries to press as many buttons as he or she can, the user may hardly move the pointing device to move the pointer on the display.

"There is another kind of pointing device which applies an optical sensor module in replace of the conventional mouse. The optical sensor module is configured to emit light to the finger and receive the reflected light from the finger for sensing a movement of the finger thereby controlling the pointer on the display. This kind of pointing device is compact and the sensing area is relatively small, which is disadvantaged in low resolution, hard to precisely control the pointer, hard to move the pointer fast, etc.

"Besides, the aforementioned conventional mouse is difficult in controlling the pointer to move very straight toward a direction, to move along a particular path, to draw a fair arc or to have an accurate fine movement due to the unstable operation of human hands and fingers.

"Recently, a kind of pointing device having a capacitive touch module (CTM) or a resistive touch module (RTM) is provided. The CTM or RTM is applied to sense the touching motion of fingers for activating commands. More particularly, the CTM or RTM includes a sensor array uniformly distributed over a sensing area. When the fingers properly touch on the sensing area, the touching motion will cause an electrical variation of the sensor array that indicates the touched position on the sensor array. However, to ensure correct detection of fingers, the whole CTM or RTM has to maintain in function-well condition. Once a portion of the CTM or RTM is failed, the movement of fingers cannot be detected correctly. Furthermore, fingers have to substantially touch the CTM or RTM strong enough to be sensed by the pointing device. All of these properties limit the application of the technologies.

"Thus, it is important to provide a pointing device that may activate commands in various ways without using buttons and move precisely for better control."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventors' summary information for this patent: "The present invention provides a hybrid pointing device including an optical navigation module and a pointing module. The pointing module is configured to sense a movement of the hybrid pointing device relative to a surface for moving a pointer on a display. The optical navigation module is configured to replace the conventional buttons of a conventional pointing device, such as an optical mouse or a trackball mouse. The optical navigation module is configured to sense gestures of at least one finger of a user to activate commands associated with particular programs running on a host. Since the optical navigation module is only configured to sense gestures of the finger but not the movement of the hybrid pointing device relative to the surface, the resolution of the optical navigation module is aimed to be sufficiently high enough for sensing gestures and no need to relatively high.

"The present invention further provides a hybrid pointing device including an optical navigation module and a pointing module. The optical navigation module is configured to assist in moving the pointer more close to the user's demands. By sensing a particular gesture of at least one finger, the optical navigation module may be configured to activate a command for limiting the moving direction of the pointer so as to move the pointer in a straight line on the display. Therefore, the user may operate the pointer very precisely along a desired direction better than a conventional pointing device. Besides, by sensing a particular gesture of at least one finger, the optical navigation module may be configured to directly move the pointer, to move the pointer at a relatively higher speed on the display, or to directly move the pointer in a limited range with the assistance of at least one key on a keyboard.

"Since the optical navigation module may be operated in many ways, such as sliding at least one finger, posing a gesture, multi-touching of fingers, clicking of at least one finger, rotating at least one finger, etc., the optical navigation module provides a more instinctive way of operating the pointer on the display rather than conventional pointing devices in which a user may only choose press or not to press buttons thereon to activate commands.

"The optical navigation module of the present invention includes at least one image sensor and at least one light source. The light source emits light and the emitted light is received by the image sensor. At least one finger of a user motions to block the emitted light and to cause at least one interruption when the image sensor receives the emitted light. The optical navigation module then transfers the interruption into electric signal for controlling the pointer shown on the display or for activating particular programs running on a host.

"The hybrid pointing device of the present invention is for being operated by a user on a surface. The hybrid pointing device includes a first module, a second module and a processor. The first module is configured to sense a movement of the hybrid pointing device relative to the surface. The second module includes at least one light source and at least one image sensor. The light source is configured to emit light. The image sensor is configured to capture an image containing at least one interruption of at least one object operated by the user from blocking the light emitted by the light source. The processor is configured to identify gestures of the object according to a variation of the interruption on the image.

"The optical navigation module of the present invention includes at least one image sensor and at least one light source. The light source emits light and at least one object operated by a user reflects the emitted light to be received by the image sensor. Since different motions of gestures of the object cause different images on the image sensor, the optical navigation module then transforms the images into electric signals for controlling the pointer shown on a display or for activating particular programs running on a host.

"The hybrid pointing device of the present invention is for being operated by a user on a surface. The hybrid pointing device includes a first module, a second module and a processor. The first module is configured to sense a movement of the hybrid pointing device relative to the surface. The second module includes a light source and an image sensor. The light source is configured to emit light. The image sensor is configured to capture an image containing at least one light spot of at least one object operated by the user from reflecting the light emitted by the light source. The processor is configured to identify gestures according to a position information of the light spot on the image.

"In an aspect of the present invention mentioned above, the position information of the light spot on the image is retrieved from a look-up table formed by dividing a field of view of the image sensor into a matrix of many sub-areas and pre-stored in the processor.

"The optical navigation module of the present invention includes at least one image sensor and a touch plate disposed opposite to the image sensor. At least one object operated by a user are placed above the touch plate causing shadows with different shapes, and the image sensor then senses the image with shadows. The optical module transforms the images into electric signals for controlling the pointer shown on a display or for activating particular programs running on a host. The touch plate may be transparent to visible light and may be formed with a plurality of through holes thereon for light transmission.

"The hybrid pointing device of the present invention is for being operated by a user on a surface. The hybrid pointing device includes a first module, a second module and a processor. The first module is configured to sense a movement of the hybrid pointing device relative to the surface. The second module includes an image sensor configured to capture an image containing at least one shadow of at least one object operated by the user from blocking the ambient light. The processor is configured to identify gestures of the object according to a position variation of the shadow on the image.

"The present invention is able to be integrated with the conventional structure of optical mouse or trackball mouse by adding the optical navigation module of the present invention and changing related periphery devices. In an aspect of the present invention, the first module and the second module included in the hybrid pointing device may share the same light source."

For the URL and additional information on this patent, see: Lin, Cho Yi; Chang, Yen Min; Hsu, Yao Ching; Ko, Yi Hsien. Hybrid Pointing Device. U.S. Patent Number 8730169, filed April 30, 2010, and published online on May 20, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=67&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=3315&f=G&l=50&co1=AND&d=PTXT&s1=20140520.PD.&OS=ISD/20140520&RS=ISD/20140520

Keywords for this news article include: Pixart Imaging Inc.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Engineering


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters