News Column

"Methods for Geotemporal Fingerprinting" in Patent Application Approval Process

May 29, 2014



By a News Reporter-Staff News Editor at Politics & Government Week -- A patent application by the inventor Howe, Justin Xavier (Larchmont, NY), filed on November 8, 2012, was made available online on May 15, 2014, according to news reporting originating from Washington, D.C., by VerticalNews correspondents.

This patent application is assigned to Mastercard International Incorporated.

The following quote was obtained by the news editors from the background information supplied by the inventors: "Geolocation data corresponding to various aspects of one's activities is readily available. For example, many users have a Global Positioning System (GPS) associated with their activities in one way or another. Such GPS devices are installed in many automobiles today, either as stand-alone transportable units, or as integrated units positioned in the dashboard of the automobile as purchased. Additionally, many watches and smart phones are now available with embedded GPS receivers and the availability to access a mapping application for providing real-time global positioning and tracking capability.

"While it is straightforward to determine the path of a user through the use of GPS, a temporal history of one's whereabouts can also be gleaned from many other sources. Even without a GPS receiver, the location of a cell phone on one's person can be roughly estimated from the regularly timed pings received from the device at a nearest receiver tower. More detailed location data is available when a user activates the cell phone to place a call. Similarly, information about the geolocation history and habits of users may be recorded from various internet and smart phone applications, such as Facebook.RTM., Twitter.RTM., Foursquare.RTM., and other social media applications, including those through which users voluntarily and routinely 'check-in' or otherwise publish information of their physical locations at any particular time.

"Another source of geolocation data is payment card usage. Both users and issuers of payment cards are particularly concerned with preventing unauthorized use of payment cards as early as possible. If a payment card user opts in to a payment card security system by providing his or her cell phone number, a direct correlation can be made between every point-of-sale purchase and the contemporaneous location of the user's cell phone. In co-owned, co-pending patent application Ser. No. 13/457,701, filed Apr. 27, 2012, entitled 'Method for Providing Payment Card Security using Registrationless Telecom Geolocation Capture,' by Howe et al., a method for enabling secure payment card usage without requiring a user to enroll or register is provided. A geo-temporal history of a payment card user's point-of-sale purchases is tracked to compare geolocation information for cell phones operated by a mobile network provider to contemporaneous cell phone location in order to match cell phone owners to their payment card accounts. A unique identification number can be assigned by the network provider in lieu of providing the matching cell phone numbers to the payment card issuer in order to maintain privacy. The identity of a payment card user can then be securely verified by the merchant in future purchases by querying the mobile network operator for the location of the payment card user's cell phone number (corresponding to the Identification Number) at the time of the purchase.

"There is a continuing need in addressing payment card theft and fraud, for authenticating the identity of a card user based on the card user's point of sale as well as other usage, without the need for a user to enroll in a credit fraud reporting service. There is also a need, not addressed in any prior art, for relating databases of users' on-line or other recorded social activity(s) (such as cell phone, Facebook.RTM., Foursquare.RTM., and so-on) to match-up a user's activity recorded for one service with a different activity recorded for another service. Such information could be useful, for example, in developing targeted advertising campaigns."

In addition to the background information obtained for this patent application, VerticalNews journalists also obtained the inventor's summary information for this patent application: "The present invention provides a method and system for using the geolocation history associated with a user's on-line and/or mobile cellular activities to generate a geotemporal fingerprint of the user. The present invention additionally provides a method and system for correlating the geolocation history associated with a user's on-line and/or mobile cellular activities from one particular data base with a user's geolocation data from a separate on-line database associated with a different activity. In particular embodiments, the geolocation history associated with on-line and/or mobile cellular activities from one particular data base is correlated with geolocation data associated with payment card usage. Such information can be used, for example, to authenticate a user, for example, as a security measure for payment card users and issuers.

"In accordance with one aspect of the present invention, a method for generating a geotemporal fingerprint associated with a user from a database of geotemporal data recorded for a plurality of users is provided. The method includes retrieving geotemporal data records for the plurality of users over a predetermined period of time, where each of the geotemporal data records includes temporal data and a geolocation indicating a time and place the geotemporal data record is generated, and a User ID associated with the user generating the geotemporal data.

"The method further includes determining fields for defining a geotemporal fingerprint associated with each user from the geotemporal data records for the corresponding User ID, where the fields preferably distinguish the user from other users associated with the database. A geotemporal fingerprint associated with each User ID is then generated based on the fields.

"In an additional aspect, the method further includes identifying and recording a georegion encompassing the geolocation for each of the geotemporal data records. The fields can include a primary georegion, where the primary georegion corresponds to the georegion in which each of the plurality of users is located for a longest time period within the predetermined period of time.

"A total length of time can then be calculated from the temporal data associated with each of the georegions for each User ID, and the primary georegion for each User ID identified from the calculated total length of time. The method can further include generating the geotemporal fingerprint to include the primary georegion associated with each User ID.

"The fields used to generate the geotemporal fingerprints can further include a secondary georegion, the secondary georegion corresponding to the georegion in which each of the plurality of users is located for a second longest time period within the predetermined period of time. Geotemporal fingerprints can then be generated which include the secondary georegion associated with each User ID.

"The geotemporal data records can be cell phone data, generated from payment card usage, or generated from one or more social networking activity.

"In other aspects, geotemporal fingerprints generated from a first database of geotemporal data records in accordance with the invention can be used to link a user or user account associated with the first database to a user account associated with a second database.

"Another method of the present invention is provided for linking a first user account associated with a first database including geotemporal data records for a plurality of users with a second user account associated with a second database including geotemporal data records for the plurality of users. Each of the geotemporal data records includes temporal data and a geolocation indicating a time and place the geotemporal data record is generated and a User ID associated with one of the plurality of users. The method includes retrieving geotemporal data records for a first user from the first database generated over a predetermined period of time, each of the geotemporal data records retrieved including a first User ID associated with the first user. The method further includes determining fields for defining for each user a geotemporal fingerprint associated with the user from the geotemporal data records with the corresponding User ID. Preferably, the fields are chosen to distinguish the user from other users associated with the database.

"The method further includes generating a first geotemporal fingerprint corresponding to the first User ID based on the fields and retrieving geotemporal data records from the second database generated for the plurality of users over the predetermined period of time. Each of the geotemporal data records retrieved from the second database include a second User ID associated with one of the plurality of users.

"A set of second geotemporal fingerprints based on the fields are then generated from the geotemporal data records retrieved from the second database, a second geotemporal fingerprint being generated from geotemporal data records comprising the second User ID. The method further includes determining a best match from the set of second geotemporal fingerprints generated from the second database to the first geotemporal fingerprint, by comparing the geolocation and temporal data in the fields of the first geotemporal fingerprint with the geolocation and temporal data in the fields of the geotemporal data records associated with each of the second geotemporal fingerprints. The second User ID corresponding to the best match is linked with the first User ID corresponding to the first geotemporal fingerprint.

"In a further aspect, determining the best match can include identifying a set of geotemporal data record pairs occurring within a predefined time period of one another for each first geotemporal fingerprint/potential match pair; and calculating a parameter indicating a geographical distance between the geolocations of each of the geotemporal data record pairs to identify a best match from the potential matches to the first geotemporal fingerprint.

"The parameter can be a great circle distance between the geolocations of each of the geotemporal data record pairs, the method further including calculating the great circle distance calculated for each of the geotemporal data record pairs within the set for each potential match. In one aspect, the best match is the one of the potential matches having a lowest mean great circle distance.

"In various additional aspects, the first database includes cell phone ping data and the second database comprises geotemporal data records generated by payment card usage for the plurality of users.

"In other aspects, at least one of the first database and the second database comprises geotemporal data records generated by a social network activity. The geolocations and temporal data recorded in the geotemporal data records generated by the social network activity can include internet protocol (IP) addresses, global positioning system (GPS) data, cellular phone ping data, call record details, or time-stamped textual data.

"In addition to the above aspects of the present invention, additional aspects, objects, features and advantages will be apparent from the embodiments presented in the following description and in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

"FIG. 1 is a flow diagram representation of an embodiment of a method of the present disclosure for generating geotemporal fingerprints from cell phone ping data.

"FIG. 2 is a flow diagram representation of an embodiment of a method of the present disclosure for identifying potential matches to a geotemporal fingerprint generated from one database from geotemporal fingerprints from a second database.

"FIG. 3 is a flow diagram representation of an embodiment of a method of the present disclosure for identifying a best match to a geotemporal fingerprint generated from one database from geotemporal fingerprints from a second database.

"FIG. 4 is a schematic representation of an embodiment of a system for implementing various embodiments of the methods of the present disclosure."

URL and more information on this patent application, see: Howe, Justin Xavier. Methods for Geotemporal Fingerprinting. Filed November 8, 2012 and posted May 15, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=628&p=13&f=G&l=50&d=PG01&S1=20140508.PD.&OS=PD/20140508&RS=PD/20140508

Keywords for this news article include: Legal Issues, Mobile Network, Mastercard International Incorporated.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Politics & Government Week


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters