News Column

Patent Issued for Telemetric Orthopaedic Implant

May 28, 2014

By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Morgan, Robert L. (Nether Poppleton, GB); Wickham, Mark David (Rampton, GB); Brady, Peter A. (Ely, GB); Janna, Sied W. (Memphis, TN); Austin, Gene Edward (Bartlett, TN); Wilson, Darren James (York, GB), filed on July 16, 2012, was published online on May 13, 2014.

The patent's assignee for patent number 8721643 is Smith & Nephew, Inc. (Memphis, TN).

News editors obtained the following quote from the background information supplied by the inventors: "This invention relates generally to orthopaedic implants and, more particularly, orthopaedic implants having data acquisition capabilities.

"Trauma products, such as intramedullary (IM) nails, pins, rods, screws, plates and staples, have been used for many years in the field of orthopaedics for the repair of broken bones. These devices function well in most instances, and fracture healing occurs more predictably than if no implant is used. In some instances, however, improper installation, implant failure, infection or other conditions, such as patient non-compliance with prescribed post-operative treatment, may contribute to compromised healing of the fracture, as well as increased risk to the health of the patient.

"Health care professionals currently use non-invasive methods, such as x-rays, to examine fracture healing progress and assess condition of implanted bone plates. However, x-rays may be inadequate for accurate diagnoses. They are costly, and repeated x-rays may be detrimental to the patient's and health care workers' health. In some cases, nonunions of fractures may go clinically undetected until implant failure. Moreover, x-rays may not be used to adequately diagnose soft tissue conditions or stress on the implant. In some instances, invasive procedures are required to diagnose implant failure early enough that appropriate remedial measures may be implemented.

"The trauma fixation implants currently available on the market are passive devices because their primary function is to support the patient's weight with an appropriate amount of stability whilst the surrounding fractured bone heals. Current methods of assessing the healing process, for example radiography, patient testimonial, etc., do not provide physicians with sufficient information to adequately assess the progress of healing, particularly in the early stages of healing. X-ray images only show callus geometry and cannot access the mechanical properties of the consolidating bone. Therefore, it is impossible to quantify the load sharing between implant and bone during fracture healing from standard radiographs, CT, or MRI scans. Unfortunately, there is no in vivo data available quantifying the skeletal loads encountered during fracture healing as well as during different patient and physiotherapy activities. The clinician could use this information to counsel the patient on life-style changes or to prescribe therapeutic treatments if available. Continuous and accurate information from the implant during rehabilitation would help to optimize postoperative protocols for proper fracture healing and implant protection and add significant value in trauma therapy. Furthermore, improvements in security, geometry, and speed of fracture healing will lead to significant economic and social benefits. Therefore, an opportunity exists to augment the primary function of trauma implants to enhance the information available to clinicians.

"Patient wellness before and after an intervention is paramount. Knowledge of the patient's condition can help the caregiver decide what form of treatment may be necessary given that the patient and caregiver are able to interact in an immediate fashion when necessary. Many times the caregiver does not know the status of a would-be or existing patient and, therefore, may only be able to provide information or incite after it was necessary. If given information earlier, the caregiver can act earlier. Further, the earlier information potentially allows a device to autonomously resolve issues or remotely perform the treatment based on a series of inputs.

"Surgeons have historically found it difficult to assess the patient's bone healing status during follow up clinic visits. It would be beneficial if there was a device that allowed the health care provider and patient to monitor the healing cascade. Moreover, it would be beneficial if such a device could assist in developing custom care therapies and/or rehabilitation.

"Additionally, surgeons have found it difficult to manage patient information. It would be beneficial if there was available a portable memory device that stored patient information, such as entire medical history files, fracture specifics, surgery performed, X-ray images, implant information, including manufacturer, size, material, etc. Further, it would be beneficial if such portable memory device could store comments/notes from a health care provider regarding patient check-ups and treatments given.

"Therefore, there is a need in the art for an instrumented orthopaedic trauma implant that can provide precise and accurate information to doctors and patients concerning the status of the implant, progress of fracture healing, and the surrounding tissue without the need for x-rays or invasive procedures."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "It is in view of the above problems that the present invention was developed. The invention is an instrumented orthopaedic implant, such as an intramedullary (IM) nail, with the capacity to provide an accurate measurement of the applied mechanical load across the implant. The implant includes sensors and associated electronic components for measurement of loads and transmission of the sensor data to an external reader.

"One aspect of the invention is that it allows for information to be gathered and processed yielding conclusive valuable data with respect to a subject's bone healing cascade. The invention removes the guessing from the diagnosis by providing objective unbiased data collected from them throughout the healing process. Because the invention has a memory function, patient data can be stored; thus, allowing for the easy transmission of the data. The data may include personal data, patient history information, as well as patient activity. If the activity is captured, the surgeon could discern if the patient has been accurately performing postoperative rehabilitation regimens. This allows the surgeon to accurately predict and prescribe further regimens, which currently is not feasible with existing employed technology.

"In another aspect of the invention, the captured information also can be used as an input to an algorithm that outputs a command for one or more reactions. The invention may react in a number of ways. The device enables the surgeon to allow autonomous intervention when needed to augment treatment using a biologic, such as injectable cements or demineralized bone matrix, to aid in the speed healing or informs the surgeon if a revision surgery may be necessary.

"Thus, in furtherance of the above goals and advantages, the present invention is, briefly, a telemetric orthopaedic implant system, the system including an orthopaedic implant and a control unit. The orthopaedic implant includes at least one sensor; a first recess adapted to receive the at least one sensor; an electronic component electrically connected to the at least one sensor, the electronic component including at least a power supply, a first transmitter, a first receiver, and a first microprocessor; a second recess adapted to receive the electronic component; potting material to seal the first recess and the second recess; a power source electrically connected to the electronic component; and an acting unit electrically connected to the electronic component, the acting unit adapted to carry out a function based upon a condition. The control unit includes a second microprocessor; a second transmitter electrically connected to the second microprocessor, the second transmitter adapted to send a signal to the first receiver of the electronic component; and a second receiver electrically connected to the second microprocessor, the second receiver adapted to receive data from the first transmitter of the electronic component.

"Further features, aspects, and advantages of the present invention, as well as the structure and operation of various embodiments of the present invention, are described in detail below with reference to the accompanying drawings."

For additional information on this patent, see: Morgan, Robert L.; Wickham, Mark David; Brady, Peter A.; Janna, Sied W.; Austin, Gene Edward; Wilson, Darren James. Telemetric Orthopaedic Implant. U.S. Patent Number 8721643, filed July 16, 2012, and published online on May 13, 2014. Patent URL:

Keywords for this news article include: Electronics, Microprocessors, Smith & Nephew Inc.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: Electronics Newsweekly