News Column

Studies from University of Calgary Provide New Data on Peroxidases

May 23, 2014

By a News Reporter-Staff News Editor at Energy Weekly News -- Fresh data on Enzymes and Coenzymes are presented in a new report. According to news originating from Calgary, Canada, by VerticalNews correspondents, research stated, "Delignification is critical in the production of biofuel from a potentially abundant renewable resource, lignocellulosic waste. One of the classes of lignolytic enzymes are peroxidases."

Our news journalists obtained a quote from the research from the University of Calgary, "Manganese sulphate (Mn2+) has a significant impact on the peroxidase activity of lignolytic fungi. Along with induction, the suppression of peroxidase activity by Mn2+ has been observed. Peroxidase regulation is governed by three critical Mn2+ concentrations: the minimum inductive concentration (MIC), the peak concentration (PC) and the minimum suppressive concentration (MSC). The induction and suppression of enzyme activity were not associated with fungal growth capacity, but with a specific enzyme response to the nutritional conditions. Manipulation of the carbon and nitrogen sources shifted the peroxidase suppression by Mn2+ to high concentrations and, hence, increased the peroxidase tolerance to Mn2+ and, consequently, peak peroxidase activities. The manipulation of carbon and nitrogen sources allowed increasing the peak concentrations of Mn2+ and corresponding peroxidase activity up to 0.5 mg/mL and 180.70 AU (173% increase compared to standard) in C. subvermispora, and up to 0.05 mg/mL and 151.23 AU in D. squalens (91% increase compared to standard)."

According to the news editors, the research concluded: "Thus, manipulation of carbon and nitrogen sources is a useful tool in enhancing fungi peroxidase tolerance to Mn2+ and improving the delignification of lignocellulosic biomass by fungi to prepare an easily consumable substrate for economically viable biofuel production."

For more information on this research see: Induction and suppression of Dichomitus squalens and Ceriporiopsis subvermispora peroxidase activity by manganese sulphate in response to carbon and nitrogen sources. Canadian Journal of Chemical Engineering, 2014;92(5):779-786. Canadian Journal of Chemical Engineering can be contacted at: Wiley-Blackwell, 111 River St, Hoboken 07030-5774, NJ, USA. (Wiley-Blackwell -; Canadian Journal of Chemical Engineering -

The news correspondents report that additional information may be obtained from R. Kannaiyan, University of Calgary, Calgary Center Innovat Technol, Calgary, AB T2N 1N4, Canada. Additional authors for this research include N. Mahinpey, R.J. Martinuzzi and V. Kostenko.

Keywords for this news article include: Biotechnology, Canada, Energy, Calgary, Alberta, Biofuel, Nitrogen, Oil and Gas, Peroxidases, Bioengineering, Oxidoreductases, Enzymes and Coenzymes, North and Central America

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: Energy Weekly News

Story Tools Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters