News Column

Patent Issued for System and Apparatus for Controlled Activation of Acute Use Medical Devices

May 7, 2014



By a News Reporter-Staff News Editor at Journal of Engineering -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventors Greeninger, Daniel R. (Coon Rapids, MN); Dinsmoor, David A. (St. Paul, MN); Larik, Vincent (Kerkrade, NL); Receveur, Rogier (Maastricht, NL); Thompson, David L. (Andover, MN), filed on September 6, 2011, was published online on April 22, 2014.

The patent's assignee for patent number 8706253 is Medtronic, Inc. (Minneapolis, MN).

News editors obtained the following quote from the background information supplied by the inventors: "Acute use medical devices are increasingly popular as modes for improving medical care. For example, single-use, temporary pH sensors, recoverable miniature cameras, and leadless stimulators are some acute use medical devices that are becoming pervasive tools used in medical treatment. Most of these devices are self-contained and powered by batteries to operate continuously until the battery is depleted or may intermittently operate with spaced apart 'sleep' intervals so as to extend battery longevity.

"In designing acute use medical devices, a trade-off is commonly encountered between competing needs for a small device size and for a battery with sufficient capacity to meet longevity goals. The battery is oftentimes the largest component in the acute use medical device and therefore significantly impacts the size of the acute use medical device.

"To minimize battery size, it is generally desirable to design a device that draws a negligible amount of current until a deterministic activation occurs. Such design should also be relatively immune to inappropriate activations so as to avoid unnecessary current consumption.

"Conventional reed switches have been used in the past with implantable medical devices and acute use medical devices. For example, a conventional reed switch has been used between the battery and the device circuitry of a pH sensor. As packaged, the reed switch is biased open (i.e., the device is 'turned-off') by an external biasing magnet placed over the sensor during manufacture. The pH sensor is 'turned-on' just prior to implantation by removing the external biasing magnet.

"However, this conventional reed switch generally tends to be too large in size and thus adds significant size to the acute use medical device. Additionally, the reed switch may be susceptible to environmental effects (e.g., magnetic or mechanical) that may result in inappropriate sensor activation. MEMS reed switches are generally susceptible to the same environmental effects that may cause inappropriate activation in conventional reed switches.

"Other implantable device designs have used monolithic Hall effect sensors, radio frequency (RF) signaling, and ultrasound to activate the device. Monolithic Hall effect sensors have been used in the past to change the state of a device based on a sensed magnetic event. Hall effect sensors typically require a stand-by current and are generally unsuitable as a means for turning a battery-powered device on or off. In implementations utilizing RF signaling, the implanted device 'listens' continuously for a unique RF signal. RF signaling shares a similar current consumption characteristic with Hall effect sensors by generally requiring some current to be used while the device is in a stand-by mode. An ultrasound transducer has been used to turn on a switch that subsequently powers a wireless sensor containing a very small battery. In this approach, the ultrasound transducer should be in effective contact with a patient's body to appropriately activate the sensor.

"Accordingly, it is desirable to provide an activation device for acute use medical devices that has relatively low or negligible current draw until a deterministic activation occurs. It is also desirable to provide an activation device for acute use medical devices that gates current to the devices while avoiding significant capacity drop to a shared power source and that does not significantly contribute to an overall size of the device. In addition, it is desirable to provide an acute use medical device having reduced susceptibility to environmental effects that may result in inappropriate activation thereof. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventors' summary information for this patent: "According to various exemplary embodiments, a system and apparatus are provided that remotely activate implantable medical devices. In a first exemplary embodiment, an integrated activation system is provided for an acute use medical device sharing a power source. The activation system comprises a switching circuit having first and second inputs and having an output coupled to the acute use device, a gating element coupled to the first input and configured to gate power from the power source to the switching circuit, and a sensing element coupled to the second input of the switching circuit. The sensing element is configured to sense an activation condition, enable an operation interval of the switching circuit, and transmit a signal to the switching circuit during the activation condition. The switching circuit is configured to transmit power to the acute use device upon receipt of a pre-determined number of signals from the sensing element.

"In another exemplary embodiment, an acute use medical device is provided comprising a power source, a therapy unit, a switching circuit having first and second inputs and having an output coupled to the therapy unit, a gating element having an input coupled to the power source and an output coupled to the first input of the switching circuit, and a sensing element coupled to the second input of the switching circuit. The gating element is configured to gate power to the switching circuit. The sensing element is configured to change from a first state to a second state indicating an activation condition of the acute use medical device, enable an operation interval of the switching circuit, and transmit a signal to the switching circuit during the second state. The switching circuit is further configured to transmit power to the therapy unit upon receipt of a pre-determined number of the signals from the sensing element.

"In yet another exemplary embodiment, an integrated activation system for an acute use medical device sharing a power source is provided. The activation system comprises a switching circuit having a first input coupled to the power source and an output coupled to the therapy unit and having a second input, a gating element having an input coupled to the power source and an output coupled to the first input of the switching circuit, and a sensing element coupled to the second input of the switching circuit. The gating element is configured to gate power to the switching circuit during a first state. The sensing element is configured to detect a first signal indicating an activation condition, enable an operation interval of the switching circuit, and transmit a second signal to the switching circuit upon detecting the first signal. The switching circuit is configured to transmit power to the therapy unit upon receipt of a predetermined number of the second signals."

For additional information on this patent, see: Greeninger, Daniel R.; Dinsmoor, David A.; Larik, Vincent; Receveur, Rogier; Thompson, David L.. System and Apparatus for Controlled Activation of Acute Use Medical Devices. U.S. Patent Number 8706253, filed September 6, 2011, and published online on April 22, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=35&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1728&f=G&l=50&co1=AND&d=PTXT&s1=20140422.PD.&OS=ISD/20140422&RS=ISD/20140422

Keywords for this news article include: Therapy, Medtronic Inc..

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Engineering