News Column

Patent Issued for Light-Emitting Systems

May 7, 2014



By a News Reporter-Staff News Editor at Electronics Newsweekly -- According to news reporting originating from Alexandria, Virginia, by VerticalNews journalists, a patent by the inventors Yeh, Wen-Yung (Hsinchu, TW); Yu, Yu-Chen (Hsinchu, TW); Yen, Hsi-Hsuan (Hsinchu, TW); Lin, Jui-Ying (Hsinchu, TW), filed on October 7, 2008, was published online on April 22, 2014.

The assignee for this patent, patent number 8704241, is Epistar Corporation (Hsinchu, TW).

Reporters obtained the following quote from the background information supplied by the inventors: "Light-emitting diodes (LEDs) are diodes that emit light when an electric current is supplied to the p-n junctions of the diodes. Compared to traditional bulbs, light-emitting diodes may provide one or more benefits, such as durability, longevity, portability, low power consumption, absence of harmful substances, such as mercury, etc. The application of LEDs may include typical illumination, traffic signal lights, vehicles, flash lights, back-light modules for display devices, projectors, outdoor displays, etc.

"Many light-emitting systems using light-emitting devices such as light-emitting diodes are designed for DC (direct-current) applications. Therefore, it may be desirable to have light-emitting systems that may be operated with AC currents, DC currents, or currents that may flow in either direction into light-emitting systems."

In addition to obtaining background information on this patent, VerticalNews editors also obtained the inventors' summary information for this patent: "In one exemplary embodiment, the present disclosure is directed to a light-emitting system. The system may include a first power input terminal and a second power input terminal and five rectifying devices coupled between the two power input terminals. The first and second power input terminals may receive an external power input. The first rectifying device may be coupled between the first power input terminal and a first intermediate contact. The first rectifying device may be configured to allow a current flow from the first power input terminal to the first intermediate contact. The second rectifying device may be coupled between the second power input terminal and the first intermediate contact. The second rectifying device may be configured to allow a current flow from the second power input terminal to the first intermediate contact. The third rectifying device may be coupled between a second intermediate contact and the second power input terminal. The third rectifying device may be configured to allow a current flow from the second intermediate contact to the second power input terminal. The fourth rectifying device may be coupled between the second intermediate contact and the first power input terminal. The fourth rectifying device may be configured to allow a current flow from the second intermediate contact to the first power input terminal. The fifth rectifying device may be coupled between the first intermediate contact and the second intermediate contact. The fifth rectifying device may be configured to allow a current flow from the first intermediate contact to the second intermediate contact and to emit light in response to the current flow. One or more of the first, second, third, and fourth rectifying devices may include one or more light-emitting micro diodes, one or more Schottky diode(s), or a combination of both types of diodes.

"In another exemplary embodiment, the present disclosure may be directed to a light-emitting system. The light-emitting system may include a substrate, a bridge-circuit connection, and one or more light-emitting micro diodes. The bridge-circuit connection may have four or more circuit branches and may be provided over the substrate. Each branch may have two terminals. The light-emitting micro diodes may be coupled between the two terminals of each branch. The bridge circuit connection may be configured to receive an alternating current input to enable a first group of the light-emitting micro diodes to emit light during positive cycles of the alternating current input. The bridge circuit connection may also be configured to receive the alternating current input to enable a second group of the light-emitting micro diodes to emit light during negative cycles of the alternating current input. The bridge-circuit connection may also have a central branch having one or more light-emitting micro diodes. The central branch may be coupled between a first intermediate contact between a first branch and a second branch and a second intermediate contact between a third branch and a fourth branch. The central branch may be configured to allow a current flow from the first intermediate contact to the second intermediate contact and to emit light in response to the current flow.

"In still another exemplary embodiment, the present disclosure may be directed to a light-emitting system. The light-emitting system may include a substrate, a bridge-circuit connection, one or more light-emitting micro diodes, and one or more Zener diodes. The bridge-circuit connection may have four or more circuit branches and may be provided over the substrate. Each branch may have two terminals. The light-emitting micro diodes may be coupled between the two terminals of each branch. The bridge circuit connection may be configured to receive an alternating current input to enable a first group of the light-emitting micro diodes to emit light during positive cycles of the alternating current input and to enable a second group of the light-emitting micro diodes to emit light during negative cycles of the alternating current input. The Zener diode may be in one or more of the four branches and may be coupled, in a serial coupling, a parallel coupling, or both, with the light-emitting micro diodes in the at least one of the branches.

"In still another exemplary embodiment, the present disclosure is directed to a light-emitting system. The system may include a first power input terminal and a second power input terminal and five rectifying devices coupled between the two power input terminals. The first and second power input terminals may receive an external power input. The first rectifying device may be coupled between the first power input terminal and a first intermediate contact. The first rectifying device may be configured to allow a current flow from the first power input terminal to the first intermediate contact. The second rectifying device may be coupled between the second power input terminal and the first intermediate contact. The second rectifying device may be configured to allow a current flow from the second power input terminal to the first intermediate contact. The third rectifying device may be coupled between a second intermediate contact and the second power input terminal. The third rectifying device may be configured to allow a current flow from the second intermediate contact to the second power input terminal. The fourth rectifying device may be coupled between the second intermediate contact and the first power input terminal. The fourth rectifying device may be configured to allow a current flow from the second intermediate contact to the first power input terminal. The fifth rectifying device may be coupled between the first intermediate contact and the second intermediate contact. The fifth rectifying device may be configured to allow a current flow from the first intermediate contact to the second intermediate contact and to emit light in response to the current flow."

For more information, see this patent: Yeh, Wen-Yung; Yu, Yu-Chen; Yen, Hsi-Hsuan; Lin, Jui-Ying. Light-Emitting Systems. U.S. Patent Number 8704241, filed October 7, 2008, and published online on April 22, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=75&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=3734&f=G&l=50&co1=AND&d=PTXT&s1=20140422.PD.&OS=ISD/20140422&RS=ISD/20140422

Keywords for this news article include: Electronics, Epistar Corporation, Light-emitting Diode.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Electronics Newsweekly


Story Tools






HispanicBusiness.com Facebook Linkedin Twitter RSS Feed Email Alerts & Newsletters