News Column

Patent Issued for Combination of Single Photon Emission Computed Tomography and Optical Imaging Detector

March 5, 2014



By a News Reporter-Staff News Editor at Journal of Engineering -- Deutsches Krebsforschungszentrum Stiftung des Oeffentlichen Rechts (Heidelberg, DE) has been issued patent number 8653464, according to news reporting originating out of Alexandria, Virginia, by VerticalNews editors.

The patent's inventor is Peter, Joerg (Heiligkreuzsteinach, DE).

This patent was filed on October 10, 2008 and was published online on February 18, 2014.

From the background information supplied by the inventors, news correspondents obtained the following quote: "Single photon emission computed tomography (SPECT) is a non-invasive imaging system for detecting photons that are emitted from a radioactive substance, such as a molecular probe, that has been administered to an individual. Clinically, SPECT is useful in oncology for determining, grading, and locating tumor mass and evaluating its malignancy before and after treatment. Radio labeled probes produce a continuous signal, independent of any underlying molecular interaction via radioisotope decay.

"Optical planar imaging/tomography (OT) is an alternative noninvasive and nonhazardous molecular imaging system, which detects light that is propagated through a tissue at single or multiple projections. Fluorescence mediated optical imaging can localize and quantify fluorescent probes present in tissues at high sensitivities and at millimeter resolutions, which make it a very useful tool for imaging breast cancer, brain function and gene expression in vivo. Optical imaging uses activatable probes that produce detectable signals upon interaction with a target.

"The present invention is drawn to a combination of SPECT and OT systems whereby the SPECT system is equipped with any type of known collimator (in case of small animal imaging a multi-pinhole type is used most effectively and used in the following exemplarily as one possible embodiment) and the OT system is of very thin extension and allocated within the field-of-view of the SPECT camera and between the imaged object and the SPECT collimator.

"Since both regional distribution and time variation of the underlying multivariate photon distributions are acquisition and subject specific and diversified by variations thereof, and imaging procedures cannot be performed repeatedly at short time intervals on the same living object in many cases, combined and simultaneous imaging is needed and possible with this novel device carrying clearly advantageous potential. Further advantages are simultaneous recording of tracer kinetics, less subject encumbrance, and identical imaging geometries. The proposed nuclearoptical tomographic imaging system has the potential to accurately quantify fluorescence and bioluminescence in deep heterogeneous media in vivo. The inventive apparatus supports the development of generalized reporter probes."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventor's summary information for this patent: "An aspect of the present invention is a dual-modality imaging system, wherein at least one single photon emission computed tomography (SPECT) camera for acquiring SPECT data and at least one optical imaging detector for acquiring optical imaging data are arranged to acquire the SPECT data and the optical imaging data of an imaged object simultaneously and from the same projection angle, the at least one optical imaging detector being a non-contact optical imaging detector for bioluminescence, fluorescence, and reflectance imaging and wherein the SPECT subsystem apparatus comprises a SPECT-detector to which, be way of example, a multipinhole collimator is attached for high-resolution/high-sensitivity radio-nuclide imaging and at least one optical imaging detector being arranged within the imaging volume to detect photons emitted by the imaged object, characterized in that the at least one optical imaging detector comprises a micro-lens array with a plurality of micro-lenses, the optical detector being attached onto the surface of the multi-pinhole collimator of the SPECT system.

"An another aspect of the present invention is a dual-modality imaging system, comprising (1) at least one single photon emission computed tomography (SPECT) camera for acquiring SPECT data, which comprises a SPECT-detector to which a collimator is attached and (2) at least one optical imaging detector for acquiring optical imaging data which is placed between the imaged object and the SPECT camera.

"In one embodiment, the SPECT camera collimator is a single-pinhole type, or is a multi-pinhole type, or is a parallel beam type, or is a fan-beam type, or is a conbeam type, or is an astigmatic collimator type, or is any parallel, diverging, or converging multi-hole type, or is an converging type with a single or multitude of focal points or lines.

"In another embodiment, the optical imaging detector is closely attached at the imaged object facing front of the collimator of the SPECT apparatus, the collimator preferably being a multi-pinhole type (see FIG. 2).

"In another embodiment, the optical imaging detector is placed at a certain distance to the imaged object facing front of the collimator of the SPECT apparatus, the collimator preferably being a fan-beam or cone-beam type (see FIG. 7).

"In another embodiment, the optical imaging detector is placed at a certain shorter distance to the imaged object independently of the SPECT apparatus while the SPECT apparatus is placed at a certain longer distance to the optical imaging detector.

"In another embodiment, an optical imaging detector comprises at least one photo detector.

"In another embodiment, an optical imaging detector comprises a position-sensitive photo detector.

"In another embodiment, an optical imaging detector comprises a micro-lens array and the position-sensitive photo-detector is positioned at the focal plane of a micro-lens array.

"In one embodiment, the position-sensitive photo-detector is at least one sensor selected from the group of charge-coupled device (CCD) based detector, avalanche photo diode (APD) array, photo diode array or complementary metal-oxide semiconductor (CMOS) sensor.

"In further embodiment, the SPECT-detector and the optical imaging detector are mounted on a common gantry which is rotatable around 360 degrees to allow for arbitrary radial positioning of the optical detector and of the SPECT camera and to allow for tomographic imaging.

"In one embodiment, an apparatus of the present invention comprises a single or plurality of light sources for illuminating the imaged object."

For the URL and additional information on this patent, see: Peter, Joerg. Combination of Single Photon Emission Computed Tomography and Optical Imaging Detector. U.S. Patent Number 8653464, filed October 10, 2008, and published online on February 18, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=71&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=3546&f=G&l=50&co1=AND&d=PTXT&s1=20140218.PD.&OS=ISD/20140218&RS=ISD/20140218

Keywords for this news article include: Deutsches Krebsforschungszentrum Stiftung des Oeffentlichen Rechts.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Journal of Engineering


Story Tools