News Column

Researchers from Lancaster University Report New Studies and Findings in the Area of Membrane Transport Proteins

February 25, 2014

By a News Reporter-Staff News Editor at Life Science Weekly -- New research on Carrier Proteins is the subject of a report. According to news originating from Lancaster, United Kingdom, by NewsRx correspondents, research stated, "We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family."

Our news journalists obtained a quote from the research from Lancaster University, "An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) ? M0 (nonselective channel) ? L1 (sodium-selective channel with divalent block) ? M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels."

According to the news editors, the research concluded: "The model and results could be also applicable to biomimetic nanopores with charged walls."

For more information on this research see: Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013;88(5):052712 (see also Carrier Proteins).

The news correspondents report that additional information may be obtained from I. Kaufman, Dept. of Physics, Lancaster University, Lancaster LA1 4YB, UK. Additional authors for this research include D.G. Luchinsky, R. Tindjong, P.V. McClintock and R.S Eisenberg.

Keywords for this news article include: Europe, Lancaster, Ion Channels, United Kingdom, Carrier Proteins, Membrane Glycoproteins, Membrane Transport Proteins.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

For more stories covering the world of technology, please see HispanicBusiness' Tech Channel

Source: Life Science Weekly

Story Tools