News Column

Researchers Submit Patent Application, "Multi-Connector and Medical Device for Extracorporeal Blood Treatment", for Approval

January 30, 2014



By a News Reporter-Staff News Editor at Politics & Government Week -- From Washington, D.C., VerticalNews journalists report that a patent application by the inventors Schaefer, Oliver (Neuenstein, DE); Moeller, Dirk (Altmorschen, DE); Stenzel, Bruno (Hatten, DE), filed on July 3, 2013, was made available online on January 16, 2014.

No assignee for this patent application has been made.

News editors obtained the following quote from the background information supplied by the inventors: "In medical devices for extracorporeal blood treatment (dialysis) frequently tube roller pumps are employed for returning the blood withdrawn from the patient to a dialyser and back to the patient. Such tube roller pumps are peristaltic pumps, wherein a loop-shaped tubing segment is adjacent to an appropriately bent bearing surface of the pump housing. A rotor of the pump located inside the bearing surface then moves with its outer edges along the tubing segment, wherein the tube is locally indented and thus the elastic material properties of the tubing segment enable blood to be fed through the tubing segment. For this, the blood is fed to the tubing segment via a first port and is discharged via another port at the other end of the tubing segment. In this way, together with the feeding and discharging lines and several air traps, for instance, the tubing segment forms a transfer system, as it is called, by which the blood of the patient is fed to a dialyser and back to the patient.

"Those transfer systems are preferably exchanged after each treatment and are not re-used for other patients. A used tubing segment thus need not be removed from the pump before a new transfer system is introduced to the device. In order to facilitate handling during removing and mounting the transfer system it is known to provide a connector adapted to be connected to a feeding and discharging line at each of the two ends of the tubing segment. However, such connectors are merely connecting pieces and fulfill no further functions. It is a drawback of such manual systems that confusions may occur upon insertion into the pump. This problem can be solved, for example, by color encoding and/or geometrical encoding.

"Furthermore, multi-connectors are known which unify both ports for feeding and discharging lines in one component part which is then adapted to be introduced into a receiving portion of the pump housing. Due to their geometrical shape and their material properties those components frequently permit simple and unambiguous insertion of the pump segment into the pump. A geometrical encoding excludes any incorrect mounting position. However, those systems frequently lack an operating surface for inserting the system into the pump which impedes manipulation.

"Moreover automatic systems intended to take over and thus facilitate threading and unthreading are known. Frequently for unthreading an actuator has to be actuated which moves the system from its therapy position into an unthreading position via a linear drive, for example. For this purpose, it may be required in such systems to operate a switch/button on the medical device or to touch a software button on a user interface."

As a supplement to the background information on this patent application, VerticalNews correspondents also obtained the inventors' summary information for this patent application: "It is an object of the invention to provide a connector for attaching a tubing segment and feeding and discharging lines of an extracorporeal blood circulation to a tube roller pump, which connector assists simple and safe handling of the transfer system formed at least by the tubing segment, the connector and the feeding and discharging lines.

"It is another object of the invention to provide a medical device for extracorporeal blood treatment on which the transfer system formed of at least the tubing segment, the feeding and discharging lines and the connector according to aspects of the invention can be mounted.

"The multi-connector according to aspects of the invention is suited for mounting a tubing segment and feeding and discharging lines of an extracorporeal blood circulation on a tube roller pump, the multi-connector having at least a base member and two connector elements for connecting the respective ends of the tubing segment to the feeding line and the discharging line. In accordance with aspects of the invention, the two connector elements are arranged on two opposing sides of the base member, the outer contour of a first connector element having at least a slide bearing portion, especially a portion including an outwardly and evenly curved outer contour, which may be a hollow cylinder portion, which when cooperating with a corresponding slide bearing portion at the pump housing of the tube roller pump, especially with an inwardly and evenly curved recess in the pump housing of the tube roller pump permits a defined pivoting motion of the multi-connector about a pivoting axis, and aside the first connector element or spaced apart from the first connector element means for locking the multi-connector with a pump housing of the tube roller pump are provided.

"This structure of the multi-connector enables the first connector element to be introduced into a receiving portion at the pump housing of a tube roller pump, wherein a pivot bearing can be formed by the cylindrical area of the connector element so that the multi-connector is pivotable about the cylinder axis of the first connector element. This can be advantageously used when inserting and removing the multi-connector, the means for locking the multi-connector being provided at the pump housing aside the first connector element. Possible locking means in the area of the pivoting point are thus not considered to be means for locking the multi-connector according to claim 1 but can be additionally provided. The basic locking means serve for locking the multi-connector with the pump housing in a therapy position.

"In a first embodiment of the invention the multi-connector and thus its two connectors can be fixedly connected to the tubing segment and the feeding and discharging lines of the extracorporeal blood circulation. On one side of the multi-connector the two ends of the tubing segment inserted in the tube roller pump for the pumping function are connected to the connector elements whereby a tubular loop is formed. On the other side of the multi-connector a respective feeding and discharging line is connected to each of the connector elements. These connections of the tubes to the multi-connector can be made by bonding.

"In a second embodiment of the invention each of the connector elements of the multi-connector has at least one receiving portion for detachably connecting the tubing segment and the feeding and discharging lines to the multi-connector. Then the multi-connector forms a re-usable adapter connectable to a standard transfer system, for example, whereby the advantageous configuration of the multi-connector is adapted to be used for a standard transfer system as well. For instance, a tubing segment is connected to the feeding and discharging lines via individual standard connector elements, and the tubing segment can then be pressed into receiving portions inside the connector elements of the multi-connector for a detachable connection. Subsequently, the multi-connector can be arranged at the tube roller pump together with the transfer system mounted thereon.

"This second embodiment of the multi-connector according to aspects of the invention as adapter for transfer systems of any type furthermore has the advantage that the material of the multi-connector need not be bio-compatible as it is not in direct contact with the blood of the patient.

"The means for locking the multi-connector in the therapy position can be formed, for instance, at the base member interconnecting the two connector elements. The means for locking the multi-connector in the therapy position may be provided in the area of the second connector element, however, or are constituted by the connector element itself. For example, the second connector element can equally be formed at least partly in cylindrical shape, wherein the cylinder axes thereof extend in parallel to each other. In this way it can be achieved that the first connector element can be used as pivot bearing about the cylinder axis of which the base member with the second connector element can be pivoted, wherein the second connector element can be pressed into an opposite receiving portion so as to achieve locking of the multi-connector in the therapy position.

"The connecting base member between the two connector elements permits good manipulation of the multi-connector as especially a gripping surface can be formed at the same which can be used for moving the multi-connector during insertion and removal by a user. Also a single-handed manipulation is possible. In an embodiment of the invention at least one side face of the base member is S-shaped for this purpose. This shape can entail e.g. an ergonomic design of the multi-connector so that it can be gripped easily and safely. An S-shaped or even twisted shape having plural S-shaped surfaces in particular permits gripping and swiveling out also a multi-connector mounted at the pump housing, because in this way appropriate gripping areas can be formed which are accessible even in the mounted state. Consequently, no actuator is required to move the multi-connector out of the therapy position. Nor is it necessary to operate a switch or button to initiate the unthreading operation.

"An S-shaped or differently shaped side face of the multi-connector can also be used as a geometrical encoding, however, by which the multi-connector can be specifically aligned at a pump housing when the pump housing is equally appropriately formed.

"In an embodiment of the invention at the multi-connector furthermore means are provided by which the multi-connector can be held at the pump housing in a position in which it is arranged on the pump housing via the first connector element but is not locked with the pump housing aside the first connector element. Thus the afore-mentioned additional locking means are concerned by which the multi-connector can be held in an unthreading position, for instance after swiveling out at the pivot bearing, without the operator having to operate additional mechanisms so that the multi-connector does not swivel back again. These additional locking means can be materialized at the multi-connector by a bent spring element, for instance, that is arranged on the base member in the area of the first connector element. The curvature of the spring element extends substantially along the outer contour of the cylindrical area of the first connector element, with at least one stop element being disposed at the spring element. The stop element can be at least an indentation or bulging at the spring element. When the pump housing is appropriately shaped, by locking at the pump housing the multi-connector can be held at least in a swivel position.

"Moreover, the invention comprises a pertinent medical device for extracorporeal blood treatment, comprising at least a tube roller pump including a pump housing having a bent bearing surface and a rotor rotating inside the bearing surface, wherein a tubing segment of an extracorporeal blood circulation can be introduced between the bearing surface and the rotor and blood can be supplied to the tubing segment via a feeding line, while blood can be discharged from the tubing segment via a discharging line. The multi-connector according to aspects of the invention is adapted to be mounted on the pump housing to which effect at the pump housing a receiving portion is provided into which the cylindrical area of the first connector element can be introduced, thereby a pivot bearing being formed by which the multi-connector is pivotable about the cylinder axis of the connector element. Furthermore, at the pump housing means for locking an area of the multi-connector at the pump housing are provided, said area being located aside the first connector element.

"The means for locking the multi-connector at the pump housing can be formed, for example, by a receiving portion at the pump housing in which the second connector element can engage. As described in the foregoing already, for this purpose the second connector element may have a cylindrical shape so that it can be introduced into a groove-shaped receiving portion. The geometry and the dimensions of said groove-shaped receiving portion are chosen, for instance, so that the second connector element has to be forced over an edge of the receiving portion so as to engage in the groove of the receiving portion. This operation takes place during mounting of the multi-connector while during dismounting the second connector element has to be pulled over the stop edge out of the receiving portion so as to release the locking again. The multi-connector and/or the pump housing therefore should be formed elastically in any way so as to allow for the locking function.

"In addition to these locking means aside the pivot bearing, further means are provided at the pump housing so as to be able to hold the multi-connector in at least a swivel position of the pivot bearing. For this, at the pump housing for example a stop catch is provided for locking with a spring element of the multi-connector.

"It is further desirable to be able to fix the multi-connector in the therapy position also along the cylinder axis of the first connector element. For this, at the pump housing at least an elevation can be formed which contacts the base member of the multi-connector, when the multi-connector is mounted, and thus prevents displacement, because the multi-connector is positively connected to the pump housing in this direction.

"Typically a pivoting cover by which at least the bearing surface and the rotor of the pump can be covered is arranged at the pump housing, wherein in an embodiment of the invention the cover is configured so that it forms a counter-bearing when the first connector element is introduced into the corresponding receiving portion. The geometries of the cover and of the multi-connector thus are matching.

"The invention further comprises such medical device in which a multi-connector according to aspects of the invention is arranged at the pump housing.

BRIEF DESCRIPTION OF THE DRAWINGS

"The invention is best understood from the following detailed description when read in connection with the accompanying drawings. Included in the drawings are the following figures:

"FIG. 1 a schematic representation of a medical device for extracorporeal blood treatment with a blood pump;

"FIG. 2 a schematic representation of a tube roller pump including an inserted tubular piece and a multi-connector according to a first embodiment;

"FIG. 3a a first schematic side view of a tube roller pump according to FIG. 2;

"FIG. 3b a schematic side view according to FIG. 3a where the multi-connector is swiveled out;

"FIG. 4a a second schematic side view of a tube roller pump according to FIG. 2;

"FIG. 4b a schematic side view according to FIG. 4a where the multi-connector is swiveled out;

"FIG. 5 a schematic side view according to FIG. 3a upon removing the multi-connector;

"FIG. 6 a schematic representation of a tube roller pump including an inserted tubular piece and a multi-connector in the form of an adapter according to a second embodiment; and

"FIG. 7 a schematic side view of a tube roller pump according to FIG. 6."

For additional information on this patent application, see: Schaefer, Oliver; Moeller, Dirk; Stenzel, Bruno. Multi-Connector and Medical Device for Extracorporeal Blood Treatment. Filed July 3, 2013 and posted January 16, 2014. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1301&p=27&f=G&l=50&d=PG01&S1=20140109.PD.&OS=PD/20140109&RS=PD/20140109

Keywords for this news article include: Patents, Therapy, Treatment.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Politics & Government Week


Story Tools