News Column

Patent Issued for Neural Stimulation with Respiratory Rhythm Management

January 27, 2014



By a News Reporter-Staff News Editor at Cardiovascular Week -- A patent by the inventors Pu, Yachuan (Minneapolis, MN); Caparso, Anthony V. (St. Louis Park, MN); Carlson, Gerrard M. (Champlin, MN); Pastore, Joseph M. (Woodbury, MN), filed on June 25, 2007, was published online on January 14, 2014, according to news reporting originating from Alexandria, Virginia, by NewsRx correspondents (see also Cardiac Pacemakers, Inc.).

Patent number 8630704 is assigned to Cardiac Pacemakers, Inc. (St. Paul, MN).

The following quote was obtained by the news editors from the background information supplied by the inventors: "The autonomic nervous system has been stimulated to modulate various physiologic functions, such as cardiac functions and hemodynamic performance. The myocardium is innervated with sympathetic and parasympathetic nerves. Activities in these nerves, including artificially applied electrical stimuli, modulate the heart rate and contractility (strength of the myocardial contractions). Neural stimulation that elicits a parasympathetic response (e.g. stimulating nerve traffic at a parasympathetic neural target such as a cardiac branch of the vagus nerve and/or inhibiting nerve traffic at a sympathetic neural target) is known to decrease the heart rate and the contractility, lengthen the systolic phase of a cardiac cycle, and shorten the diastolic phase of the cardiac cycle. Neural stimulation that elicits a sympathetic response (e.g. stimulating nerve traffic at a sympathetic neural target and/or inhibiting nerve traffic at a parasympathetic neural target) is known to have essentially the opposite effects. The ability of the electrical stimulation of the autonomic nerves in modulating the heart rate and contractility may be used to treat abnormal cardiac conditions, such as to improve hemodynamic performance for heart failure patients and to control myocardial remodeling and prevent arrhythmias following myocardial infarction. The autonomic nervous system regulates functions of many organs of the body. Vagus nerve stimulation, for example, affects respiration as the vagus nerve includes many lung, bronchial and tracheal afferents that feed into the respiratory centers of the brainstem."

In addition to the background information obtained for this patent, NewsRx journalists also obtained the inventors' summary information for this patent: "This disclosure relates to systems, devices methods for monitoring respiration to improve the efficacy of a neural stimulation therapy and/or reduce or avoid side effects of a neural stimulation therapy. Respiration changes during sleep or rest, a state with a predominant vagal/parasympathetic activity and stabilized respiration, are used to titrate the neural stimulation therapy. Various embodiments use a measurement of respiratory stability or instability during sleep or rest as a feedback to control stimulation of an autonomic neural target (e.g. vagus nerve stimulation). Various embodiments use a measurement of variability of a respiratory parameter, such as respiratory rate, as an indicator of respiratory stability or instability. A decrease in respiratory variability is a sign of improvement, and an increase in respiratory variability is a sign of disease progression.

"A system embodiment comprises at least one respiration sensor, a neural stimulation therapy delivery module, and a controller. The respiration sensor is adapted for use in monitoring respiration of the patient. The neural stimulation therapy delivery module is adapted to generate a neural stimulation signal for use in stimulating the autonomic neural target of the patient for the chronic neural stimulation therapy. The controller is adapted to receive a respiration signal from the at least one respiration sensor indicative of the patient's respiration, and adapted to control the neural stimulation therapy delivery module using a respiratory variability measurement derived using the respiration signal.

"According to a method embodiment, a chronic neural stimulation therapy is delivered. The therapy includes stimulation to an autonomic neural target. Respiration is monitored during a low activity period. Respiration variability is determined using the monitored respiration. An intensity of the stimulation to the autonomic neural target is adjusted using a comparison the respiration variability to at least one predetermined threshold.

"This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which are not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their equivalents."

URL and more information on this patent, see: Pu, Yachuan; Caparso, Anthony V.; Carlson, Gerrard M.; Pastore, Joseph M.. Neural Stimulation with Respiratory Rhythm Management. U.S. Patent Number 8630704, filed June 25, 2007, and published online on January 14, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=25&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1226&f=G&l=50&co1=AND&d=PTXT&s1=20140114.PD.&OS=ISD/20140114&RS=ISD/20140114

Keywords for this news article include: Therapy, Cardiology, Cardiac Pacemakers Inc..

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC


For more stories covering the world of technology, please see HispanicBusiness' Tech Channel



Source: Cardiovascular Week


Story Tools